

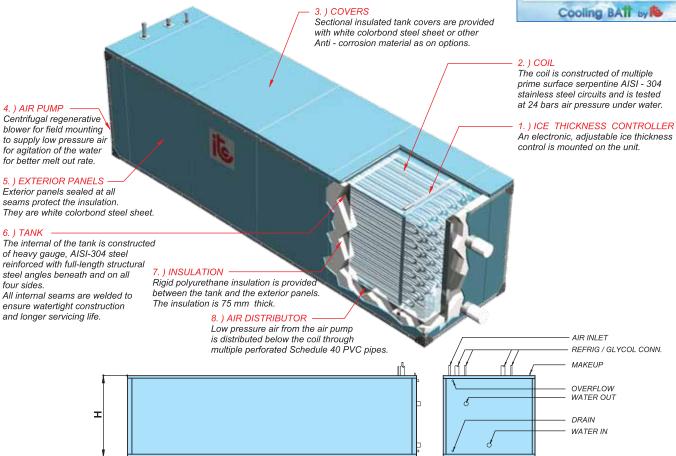
The Economical Ice Bank Storage

Newest innovation, CO₂ thermal ice storage system, design to utilize Carbon Dioxide (CO₂) which is GWP base line as a main refrigerant for the air conditioning system in conjunction with other refrigerants and combined with the latent heat storage technology of Cooling BAtt, which generates cooling in night-time and stored cooling energy be used in daytime. This technology with total system design C.O.P. can help to reduce electricity consumption, save electricity pay bill and high environmental friendliness.

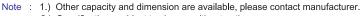
Many people may wonder what makes it so economical. The simple answer is ITC's Ice Bank is highly specialized equipment designed for generating tons of ice clinging along the coil in the night-time that surround is cold enough to decrease condensing temperature, this will lower energy and power consumed by compressor which is the highest energy consumption in refrigeration cycle and also lower the heat rejected quantity. You can save more by run only the water pump or less set of evaporative condenser since the temperature of air and circulate water flows through the evaporative condenser is lower than daytime.

I.T.C. (1993) CO., LTD.


10, 12 ซอยรามคำแหง 118 แยก 61 แขวงสะพานสูง เขตสะพานสูง กทม. 10240 10, 12 Soi Ramkhamhaeng 118 Yak 61, Saphansoong, Saphansoong, Bangkok 10240 Thailand


Tel: +66-2184-0055 Fax: +66-2184-0065 info@itc-group.co.th www.itc-group.co.th

Cooling BATT by 6


GLYCOL MODEL	Capacity		w	L	Н	SHIPPING	CONNECTION (mm) NOMINAL SIZE		
	TON-HRS	kW - Hr	(m)	(m)	(m)	WEIGHT (kg)	INLET	OUTLET	DRAIN
GIC-135 GIC-270 GIC-540	135 270 540	475 950 1,900	1.03 1.03 2.06	6.25 6.30 6.35	1.30 2.60 2.60	3,880	50 75 100	50 75 100	13 13 20

R - 22 MODEL	Capacity		w	L	Н	SHIPPING	CONNECTION (mm)		
	TON-HRS	kW-Hr	(m)	(m)	(m)	WEIGHT (kg)	NOMINAL SIZE		
							INLET	OUTLET	OIL-DRAIN
HIC-135	135	475	1.03	6.08	1.30	1,900	32	75	13
HIC-270	270	950	1.03	6.10	2.60	3,800	50	100	13
HIC-540	540	1,900	2.06	6.13	2.60	7,600	75	125	20

AMMONIA, CO ₂ MODEL	Capacity		W	L	Н	SHIPPING	CONNECTION (mm) NOMINAL SIZE			
		TON-HRS	kW-Hr	(m)	(m)	(m)	WEIGHT (kg)	INLET	OUTLET	OIL-DRAIN
	AIC-170	170	600	1.10	6.07	1.40	1,500	32	65	13
	AIC-340	340	1,200	1.10	6.08	2.80	3,000	40	75	13
ı	AIC-680	680	2,400	2.20	6.10	2.80	6,000	50	100	20

COMPLETE UNIT WITH INSULETED TANK

	Capacity		w	L	Н	SHIPPING	CONNECTION (mm) NOMINAL SIZE		
MODEL	TON-HRS	kW-Hr	(m)	(m)	(m)	WEIGHT (kg)	INLET	OUTLET	DRAIN
GIC-254U	254	895	2.12	6.39	1.81	4,700	75	75	13
HIC-254U AIC-310U	254 310	895 1,090	2.12	6.39 6.39	1.81 1.81	4,600 3,800	50 40	50 75	13 13

 $2.) \ \ \text{Specifications subject to change without notice}.$

w

- a. bank of ices clinging on the outer part of the serpentine coilb. uniform ice thickness formed
- b. uniform ice thickness formed submerged under the water

